中岛个

平成19年5号事件

# 意見書

2007年4月11日

電波監理審議会 御中

異議申立人 草 野 利 一 外114名

異議申立人ら代理人

弁護士 海渡 雄一

同 只野 靖

同 村上 一也



- 1 標記異議申立人の申立に係る総務大臣に対する異議申し立て事件(平成19年5号事件)は、電波法87条但書に定める「事案が特に重要である場合」に該当することが明らかであるから、主任審理官の西本修一氏の指名を取り消し、電波監理審議会が審理を主宰すべき委員を指名することを求める。
- 2 事案の重大性に鑑み、審理を主宰すべき委員は、電波監理審議会の委員全 員とすべきである。
- 3 主任審理官西本修一氏は、「電波監理審議会が行う審理及び意見の聴取に 関する規則」第13条に基づき、本件の審理を回避すべきである。

# 意見の理由

1 はじめに

本件を電波監理審議会の委員が審理するのではなく、西本審理官に審理させ

るとすれば、このような措置は電波監理審議会の不服救済機関としての自己否定に外ならない。西本審理官は、本件処分の前提となる規則制定の当事者と言うべきである。このような者に審理を主宰させることは、不服審査機関の第三者性を確保するという、近代的な不服救済制度の根本を否定することとなる。電波法は、このような重大案件について自ら審理を主宰することを正面から認めている。電波監理審議会の委員に、もし不服救済機関としての矜持があるならば、主任審理官の西本修一氏の指名を取り消し、電波監理審議会が審理を主宰すべき委員として委員全員を指名するべきである。

2 本件は電波法87条に定める「事案が特に重要である場合」に該当する 電波法87条は、「審理は、電波監理審議会が事案を指定して指名する審理 官が主宰する。ただし、事案が特に重要である場合において、電波監理審議会 が審理を主宰すべき委員を指名したときは、この限りでない」と定める。

しかし、本件が異議申し立て事件としては「事案が特に重要である場合」に 該当することは、すでに、2007年4月3日付意見書に記載したとおりであ るが、念のため、再度述べておく。

- (1) まず第一に、問題となっている事案において問われていることは、我が 国のアマチュア無線の存続そのものに直接影響を与える極めて重大な電波 法上の処分の適否が争われていることである。そして、事件の内容におい て問われているのは、電波の割り当ての問題ではなく、アマチュア無線の 通信が継続できるかどうかという、無線通信の死活的問題が問われている のである。このような意味において、本件処分による影響は極めて重大で ある。
- (2) 第二に、関係する異議申立人の人数が114名と多数である。さらに、これによって影響を受ける利害関係人は、異議申立人だけではなく、我が国において免許を受けている全てのアマチュア無線家、短波放送事業者ならびに受信者、航空無線使用者、漁業無線使用者など、非常に多数かつ広汎である。
- (3) 第三に、本件規則の制定に当たっては、情報通信審議会の議論を経ているけれども、その経過に重大な過誤があり、異議申立人らが実際に販売さ

れている機器を用いた実験によって、その過誤が既に実証されていること である。

- (4) 第四に、これまで販売されている国内メーカー製造のPLC機器においては、メーカーが自主的にアマチュア無線周波数帯に被害をもたらさないよう配慮して機器の仕様にノッチを組み込んできたこともあって、本件規則の瑕疵は顕在化しなかった(ただし、それでも、少なからぬ影響は避けられない)。しかし、本件規則の瑕疵は、このようなメーカー側の配慮によって治癒されないことは当然であり、メーカーがそのような配慮をしなければ、ただちに顕在化するものである。現に、平成19年3月末に販売が開始されたPLC機器は短波放送帯についてノッチがなく、同放送の聴取は極めて困難な事態となっている。しかも、ひとたびこのような事態が生じた場合、屋内で運用されている他者所有のPLC機器を特定することは極めて困難であり、事実上、被害の回復は困難となる。このような回復困難な被害が一挙に現実化しようとしているのである。
- (5) 第五に、本件は、その及ぼす影響が甚大であり、迅速な判断を審議会全体で議論して速やかに判断する行う必要がある。審理官による審理では、審理官のまとめた意見書に基づく審議会の議論をせざるを得ない。しかし、本件総務省令改正を主導した官僚に委ねていたのでは、適切な判断が不可能であることは明白である。
- (6) 第六に電波監理審議会の任務は、電波の公平な利用に帰着するが、長い電波行政の歴史において、電波利用に対する受忍できない継続的妨害を引き起こすような機器を認可した例は皆無である。他の認可された通信が困難になるような電波利用を認めた前例がないのである。総務大臣が認可した電波法の免許事業者の通信ができなくなるという深刻な危機を、総務省自らが創り出すという異常な状況が生み出されているのであって、このような極めて特異な事態は直ちに是正されなければならず、それがされなければ電波監理審議会の委員全員の見識が問われる。
- (7) 第七に、審議会の委員の方々には、メーカーは総務省令において義務づけられていないのに、なぜ自主的にノッチを入れているのかという点について深く考えて頂きたいということである。総務省令の定めたPLCの許

容値に問題がないのであれば、ノッチを入れる必要はないはずであるのに、なぜ先行国内販売メーカーはこのような設計を採用したのか。それは、総務省令の定めている許容値が不十分であり、アマチュア無線等の通信妨害となることをメーカーは知っているからである。

- (8) 最後に、このような電波環境の未曾有の危機を救うためには、審議会・ 委員みずから前に乗り出し、審議会本来の機能を発揮し、誤った総務省令 とこれに基づく型式指定を取り消して頂きたいのである。
- 3 西本審理官が審理に関与することは許されない

西本修一氏は、本件PLCの導入に深く関与しており、「職務上当該事案の 処分に関与した」(「電波監理審議会が行う審理及び意見の聴取に関する規則」 9条6号)者であり、また「審理の公正を妨げるような事情がある。」(「電 波監理審議会が行う審理及び意見の聴取に関する規則」10条)といえる。

電波監理審議会は、平成19年3月28日、持ち回りにより、本件審理を 主催する審理官として西本修一氏を指名し、西本修一氏は、異議申立人代理 人らに対して、同年4月4日、「電波監理審議会審理開始通知書」を送付し た。

しかしながら、西本修一氏は、本件PLCの導入に深く関与しており、同 氏が主任審理官として本件審理を主宰した場合、「審理の公正が確保できな い」(電波監理審議会が行う審理及び意見の聴取に関する規則第13条第1 項)場合であることが明らかであるから、まず自ら回避するべきことを勧告 する。

- (1) 西本修一氏は、平成18年7月21日に、総務省人事により、「(電波 監理審議会)審理官」に任命された。
- (2) 西本修一氏の前職は、情報通信政策局宇宙通信政策課長であるところ、 審理官に異動となったものである。
- (3) ところで、本件PLCを可能とした無線設備規則の一部を改正する省令 案については、電波法第99条の12第1項の規定により、平成18年 8月23日に、意見の聴取が行われたが、同意見の聴取を主催した人物 が、審理官であった西本氏である。

- (4) 上記意見の聴取においては、合計7名が利害関係者として意見を述べた。 2者が賛成の意見を述べたが、5者は導入に反対の意見であった。なお、 本件異議申立人である草野利一氏も、審理冒頭に反対意見を述べたもの である。
- (5) 同意見の聴取において、草野氏は、本件PLCの導入に反対する立場から意見を述べ、その後、質疑応答の際、参考人として出席していた総務省の前電波環境課長であった富永昌彦氏が答弁に立ち、あいまいな返答に終始したため、草野氏が明確な返答を求めたところ、審理官であった西本氏は、「そんなに熱くならないで下さい」と述べるなどして、草野氏の反対意見を遮った。
- (6) その後、西本氏は、自分の名義で、平成18年9月13日付意見書を提出し、「無線設備規則の一部を改正する省令案は、適当である」との意見を述べ、その理由について、概要、以下のとおり述べている。
  - ① 今回追加される規定における許容値は、「他の通信に絶対に妨害を与えな いことを保証するものではなく、他の通信に有害な妨害を与えない限りに おいてここまで許容する」という性格のものであると考える。総務省も回 答の中で「欧米でもそうであるが、技術基準を守れば、絶対に混信が起き ないというようなものではない。」と述べている。例えば米国のFCC規則 で、「本パートで規定された限度値を守ったとしてもすべての状況下で有 害な妨害を防止できるとは限らないことに注意しなければならない。」と 定めているのと同様と考えられる。なお、答申で示された許容値は、測定 方法が異なるため一概には比較できないが、米国の規格と比べて厳しめに 設定されているものと考えられる。研究会や情報通信審議会での検討経緯 を見ると、許容値については、より高速の信号伝送を可能とするために電 波の漏えいをできる限り許容すべきという意見、それとは反対に、無線利 用システムが受ける妨害を極力排除するために電波の漏えいをできる限 り制限すべきとする意見、両者の中間的な値にすべきとする意見など様々 な意見が出され、考え方の乖離は非常に大きいものであった。今回意見の 聴取で述べられたような厳しい許容値を求める意見は、研究会や情報通信 審議会情報通信技術分科会CISPR委員会でも、構成員からの意見やパブリ

ックコメント、関係者からの意見として主張されたが、それらの意見を聴取した上で審議が行われ、情報通信審議会から答申が出された。妨害を受ける側の意見を全て受けいれれば限りなく厳格な許容値になることが想定されるが、先ほど述べた今回追加される規定の許容値の性格を勘案すると、妨害を受ける側の要求が完全には満たされたものでないにしても、1項で述べたように必要な手続きを経て適切に運営され、両者の意見を踏まえた上で出された情報通信審議会の答申は尊重すべきものと考える。」

② 「高速電力線搬送通信は、情報通信インフラのブロードバンド化が進展する中、屋内で既存の電力線を使用することにより、容易なネットワーク構築に資するものであり、その導入を可能とする無線設備規則の改正の意義は認められる。また、今回の意見の聴取に際し、高速電力線通信推進協議会及び(社)日本アマチュア無線連盟から賛成意見(要望あり)が出されている。意見の聴取では、欠席者2者を含む5者からの反対意見も表明されたが、無線設備規則は今回追加する規定以外にも、混信等の除去のための措置を講ずる義務を定めていること、電波法では技術基準への適合性に加え、他の通信に妨害を与えないと認めるときにこれを許可することとされているなど、電波法全体でみると混信や妨害に配慮した体系となっていること、万一混信等が生じたときに対応する措置も電波法に規定されていること、及び、上記1項から5項で述べたことを総合的に勘案すると、情報通信審議会の答申を尊重することが適切と考えられる。よって、今回の無線設備規則の改正案は、情報通信審議会答申「「国際無線障害特別委員会

(CISPR)の諸規格について」のうち「高速電力線搬送通信設備に係る許容値及び測定法」についての一部答申」に従って適切に規定されており、また、これまで3項から5項で述べた以下の点に総務省が配意することにより、電波監理上特段の支障は生じないと考えられることから、本件諮問に係る無線設備規則の改正案は、適当と認められる。」

以上のとおり、西本氏の意見は、「適当と認められる」とだけで、実質的な理由を全く示していない。結局のところ、西本氏は本件PLCを導入しようとする総務省の意見をそのまま追認したに過ぎない。

# 4 結論

このような審理官が、本件を担当すれば、その結論は審理を待つまでも明らかである。西本審理官は、自ら「電波監理審議会が行う審理及び意見の聴取に関する規則」第13条1項に基づき、潔く本件からの「回避を願い出なければならない」。もし、自ら回避を申し出ない時は、申立人らは次のしかるべき対処を考慮する。

また、電波監理審議会は、西本審理官の指名を取り消した上で、電波法 87条但書に定める「事案が特に重要である場合」に該当するとして、電 波監理審議会が審理を主宰すべき委員として委員全員を指名するべきで ある。

# 意見書

無線設備規則の一部を改正する省令案について、電波法第99条の12第1項の規定により、意見の聴取を行った(平成18年8月23日)結果、下記のとおり意見を決定する。

平成 18 年 9 月 13 日

主任審理官 西本 修一

記

## 第1 意 見

無線設備規則の一部を改正する省令案は、適当である。

#### 第2 事実及び争点

- 1 改正案の内容
- (1) 改正内容
  - 一 電力線搬送通信設備の周波数の範囲等に、2MHzから30MHzまでの周波数を追加すること。(第59条関係)
  - 二 2MHzから30MHzまでの周波数を使用する電力線搬送通信設備の技術基準を定めること。(第60条関係)
  - 三 その他規定の整備をすること。
- (2) 施行期日 公布の日から施行すること。
- 2 総務省の陳述の大要

(1の改正案の内容の説明として、以下の陳述があった。)

電力線搬送通信は、電力を供給する電力線を伝送路として通信を行おうとするものであり、現在10kHzから450kHzまでの周波数を使用する電力線搬送通信設備が利用されている。

今般、屋内において2MHzから30MHzまでの周波数を使用する電力線搬送通信設備について、平成18年6月の情報通信審議会で一部答申された技術的条件の内容に基づき、許可を要するものについて、伝導妨害波の許容値等を定めるものである。

#### 3 利害関係者の陳述等

本件改正案に関し、下表のとおり、利害関係を有する7者が準備書面を提出し、このうち5者が、意見の聴取の期日に出席して陳述した。

また、意見の聴取の陳述に欠席した大石雅寿氏、小黒常隆氏については、電波監理審議会が行う審理及び意見の聴取に関する規則第42条において準用する同令第17条の規定により、当該準備書面のとおり陳述したものとみなした。

本件改正案に対する賛否は、次のとおりであり、利害関係者から出された意見・要望の概要及びこれに対する総務省の回答の概要は、別紙のとおりである。(事案の範囲や 利害関係の範囲を超える部分を含むと思われるものもあるが、事案に関連するものは記載した。)

| 利害関係者           | 費 否 | 備考                                                                                            |
|-----------------|-----|-----------------------------------------------------------------------------------------------|
| 草野 利一(個人)       | 反 対 | Samuelarings professional month and the gaps y at \$117 K 1.1 minute. Salar S Barrelos in the |
| 高速電力線通信推進協議会    | 賛 成 |                                                                                               |
| 株式会社日経ラジオ社      | 反 対 |                                                                                               |
| 社団法人日本アマチュア無線連盟 | 養 成 | 要望あり                                                                                          |
| 北川 勝浩(個人)       | 反対  |                                                                                               |
| 大石 雅寿 (個人)      | 反 対 | 欠席                                                                                            |
| 小黒 常隆(個人)       | 反 対 | 欠席 .                                                                                          |

#### 第3 理由

本件は、屋内において2MHzから30MHzまでの周波数を使用する電力線搬送通信設備(高速電力線搬送通信設備)の技術基準を定めるため、無線設備規則の一部を改正するものである。

近年、情報通信インフラのプロードバンド化が図られており、屋内に敷設された電力線を利用する電力線搬送通信設備について、従来の10kHzから450kHzまでの周波数を利用する設備以外に、より高速の情報伝送を可能にする2MHzから30MHzまでの周波数を用いる高速電力線搬送通信設備の導入が要望されている。高速電力線搬送通信設備から漏えいする電波に関する技術的な条件については、情報通信審議会において審議が行われてきたが、平成18年6月、「「国際無線障害特別委員会 (CISPR) の諸規格について」のうち「高速電力線搬送通信設備に係る許容値及び測定法」についての一部答申」が出されたところである。今回の改正は、この答申内容を踏まえ、高周波利用設備の許可に係る必要な規定の整備を行おうとするものであり、改正の必要性は認められる。

以下、主要な論点を5つに分けて検討した。

## 1 情報通信審議会等の運営について

今回の情報通信審議会の答申は、高速電力線搬送通信に関する研究会(研究会)及び情報通信審議会情報通信技術分科会及び同分科会CISPR委員会における審議を経て出されているが、反対の意見を表明する利害関係者から、研究会、CISPR委員会及び情

報通信技術分科会の運営に関する次のような意見が出された(詳細は別紙参照)。 「パブリックコメントには相当数の反対意見もあった。」

「パブリックコメントで指摘されているにもかかわらず、それを研究会は無視した。」「研究会に参加していた各短波帯の関係者の意見は答申に盛り込まれなかった。」

「国土交通省航空局から航空管制への障害を懸念する声が上がったが、総務省は無視した。」

「情報通信審議会技術分科会の席上でも、当該実験で行われた雑音の測定箇所が少なすぎると意見があった。」

これらに対し、総務省から、次のような回答があった(詳細は別紙参照)。

「パブリックコメントの中身、構成員の意見すべて議論の対象とされた結果として研究会の報告書ができ、審議会で議論が行われ、最終的に答申としてまとめられたと理解している。」

「研究会のパブリックコメント及びCISPR委員会における意見の聴取の結果、必要な修正が行われていると考えている。」

「航空管制からの障害を懸念する声を総務省が無視した事実はなく、国土交通省からの発言について、規制に係る内容については、情報通信審議会という公正・透明な場で議論の上答申を得る必要があることを説明したのみであり、その後、国土交通省から規制案について提案はなかった。」

「情報通信審議会技術分科会において、測定点数に関する質疑応答があった上で了承されたものである。」

この点に関しては、以下のとおり、情報通信審議会情報通信技術分科会、同CISPR委員会及び研究会の運営に問題があったとは認められない。

高速電力線搬送通信に関する研究会は、平成17年1月から検討を行い、有識者により 共存条件(案)を作成して、同年10月にパブリックコメントを実施した。提出された 意見の概要とそれに対する研究会の見解は公表されている。研究会ではこれらの意見 も踏まえ、同年12月に報告書をとりまとめた。

情報通信審議会では、平成18年1月の情報通信技術分科会で、同分科会CISPR委員会で審議を開始することが報告され、CISPR委員会は、同年2月、研究会の報告書を基礎にして審議を開始した。CISPR委員会は小委員会を設置して審議を進め、同年3月、許容値及び測定法の案を作成し、同年4月、関係者からの意見聴取を実施した。意見の概要とそれに対するCISPR委員会の見解は公表されている。その後、これらの意見も踏まえた議論を行うとともに、同年5月、高速PLC設備を実際の家屋に設置して公開実験を実施した。同年6月、公開実験の結果を踏まえた許容値及び測定法の修正案について審議が行われ、「CISPR委員会報告」がとりまとめられた。そして、6月29日の情報通信審議会情報通信技術分科会で審議が行われ、答申された。

以上のように、研究会及び情報通信審議会CISPR委員会では、構成員の意見に加えパブリックコメントや外部の関係者からの意見聴取の機会を設けるなどの措置をとっており、基準の強化を求める見地からの意見、緩和を求める見地からの意見ともに全てが研究会の報告書やCISPR委員会の報告に反映されたわけではないとしても、そのことをもって研究会やCISPR委員会の運営が不適切であったとは認められない。また、情報通信審議会情報通信技術分科会でも委員から意見や質問があったが、答申はそれらを踏まえて了承されたものである。

#### 2 技術基準の規定方法について

無線設備規則の改正案では、高速電力線搬送通信設備(高速PLC設備)の技術基準として、伝導妨害波の電流及び電圧並びに放射妨害波の電界強度の許容値の規定を追加している。このうち、通信状態における伝導妨害波の電流は、LCL(縦電圧変換損)を16dBとした測定用回路網の手前でコモンモード電流(電力線に高周波信号を流したとき、二本線を同一方向に流れる電流成分)の許容値を定めることとしている。

この点に関し、反対の意見を表明する利害関係者から、概略次のような反対の意見があった (詳細は別紙参照)。

「漏えい電界を抑えるためにモデムのところのコモンモード電流で規制することは、 科学的に全く間違っている。」

「コモンモード電流をモデムのところで規制しても、漏えい電界の強度に対して何の 制限にもならない。」

「コモンモード電流を発生しているのは分岐であり配線である。」

「コンセントのところではかったLCLは意味がない。」

「コモンモード電流ではなく、漏えい電界の強度で規制すべきである。」

「電界強度で規制するというのがおそらく正当であるが、電流で規制する場合にはコモンモード電流ではなくディファレンシャルモード電流を規制しなければいけない。」「コモンモード電流が存在しない場合でも、電力線が効率の良いアンテナとして働く場合がある。」

これに対し、総務省から、次のような回答があった(詳細は別紙参照)。

「コモンモード電流値で規制する考え方は、①2MHz~30MHzにおける漏えい電波の波源の広がり及び測定の容易さ、②漏えい電波の電界強度とコモンモード電流値には対応関係があり適切に規定されたものであればどちらの値で規定しても問題はないことから、適当と考えられる。なお、屋内の電力線の電気的特性については、LCLにより考慮されている。」

「研究会において、電力線が効率よいアンテナとして働く可能性を示唆する資料も提示されたが、それも踏まえてコモンモード電流で規定する報告がまとめられた。」

その後、質疑応答が行われたが(詳細は別紙参照)、議論は平行線で、意見を述べ た利害関係者の納得を得るに至らなかった。

これらの点については、以下のように考える。

研究会では、高速電力線搬送通信設備の許容値は、この周波数帯における漏えい電波の波源及び測定の容易さを考えて、電力線から漏えいする電波を測定する代わりにコモンモード電流を測定することとしたが、それで漏えい電波を推定できるとした理由は、おおよそ次のようなものと考えられる。

- ・ 漏えい電波の主要な原因はコモンモード電流であり、漏えい電波の電界強度とコ モンモード電流値は対応関係がある。
- コモンモード電流は、電力線の平衡度が悪いことにより発生する。
- 発生するコモンモード電流は、おおむねLCLの値が小さいほど大きくなる。
- ・ したがって、最小に近いとみなせる値のLCLを測定用回路網で実現し、そこで 発生するコモンモード電流を測定すると、最大に近いとみなせるコモンモード電流 がわかり、漏えい電波の強度が推定できる。

配線系内の不平衡状態は、周波数、時間及び場所によって変動するため、建築物内に張り巡らされた配線を、コモンモード電流がどのように流れているかを直接測定することは不可能である。そこで研究会では、我が国の家屋の電力線の平衡度の実態を把握するため、関西地区39、関東地区23の家屋の総計487個のコンセントにおいて、周波数を変化させて線路の平衡度の指標であるLCL等を測定し、LCLの測定値として約10万件のデータを取得した。測定されたLCL値は、約36dBを中心として10dB~70dBまで極めて広く分布している。このデータは、我が国の家屋の電力線全体を完全に反映しているとは言えないかもしれないが、研究会では実行上可能な範囲で得られたデータとして規格の検討において採用され、それを踏まえて情報通信審議会の答申がまとめられた。許容値を定めるに当たっては、平衡度が悪い家屋からの妨害波によって生じる妨害を極力低減するため、99%が超えるLCL値として16dBが採用された。

なお、測定方法は無線設備規則で規定するものではないが、情報通信審議会の答申では、高速PLC装置(金属面上に置かれた高さ40cmの非導電性台の上に設置)と測定用回路網(金属面上に設置)の距離を80cmとし、電源線で接続して、測定用回路網から10cm離れた位置における妨害波電流を測定することとされている。

全ての特殊な電力線の配置をも考慮すると、この研究会の考え方に反する事例を挙げることが可能かもしれないが、このように、L.C.L.値16dBという劣悪な平衡度において発生するコモンモード電流を測定する方法が採用されており、コモンモード電流が漏えい電波の主要な原因であることを踏まえると、高速電力線搬送通信設備の許容値をコモンモード電流で規定するという研究会の方針が、「科学的に全く間違っている。」、「何の制限にもならない。」とは言えないと考える。

次に、反対意見にある電界強度による規定方法を考える。米国は屋内で利用する高速電力線搬送通信について放射妨害波の電界強度で規定しており、測定は、典型的な設置場所を代表するものであることを実証することが可能な最低3ヶ所の設置場所で行うこととされている(高速電力線搬送通信に関する研究会報告書)。屋内電力線からの漏えい電波は、電力線の配線形態や負荷状況、スイッチのON-OFF、平衡状態等に複雑に依存し、周波数、時間及び場所によって変動するため、測定に「典型的な設置場所」を使用する限り、屋内配線等の特殊な条件を考慮すると、混信等の発生の可能性を完全に排除できるものではない。実際、米国のFCC規則では、「本パートで規定された限度値を守ったとしてもすべての状況下で有害な妨害を防止できるとは限らないことに注意しなければならない。」と記されている。反対の意見を提出した利害関係者が指摘したように、コモンモード電流の規定で、屋内配線の特殊な条件も含めると混信等の発生の可能性を完全に排除できるものではないが、このように許容値を電界強度で規定したとしても必ずしも全て解決できるとは限らないと考えられる。したがって、測定の容易さ等を考えて、電力線から漏えいする電波を測定する代わりにコモンモード電流を測定することとした研究会の方針は理解できる。

また、ディファレンシャルモード電流での規定については、ディファレンシャルモード電流と漏えい電波の電界強度との対応関係が適切に示せれば可能性はあるかもしれないが、漏えい電波の主要な原因を考えてコモンモード電流で規定するとした研究会の方針が自然な方法であると考えられる。

コモンモード電流は屋内配線の分岐等で平衡度が悪くなれば発生すると考えられるが、このことは研究会、情報通信審議会CISPR委員会等の審議においても認識され、また、パブリックコメントでも指摘されており、審議の結果、その効果はLCLで考慮

されているとされ、答申はそれらを踏まえたものである。また、研究会において電力線が効率の良いアンテナとして働く可能性を示唆する資料も提示されたが、それも踏まえてコモンモード電流で規定する報告がまとめられている。コモンモード電流で規定することは、そもそもLCL値を99%値の16dBで定めていることや、利害関係者の意見にあるような、電力線が効率の良いアンテナとして働く可能性も完全には否定できないと考えられることなどから、他の通信へ絶対に妨害を与えないことを保証するものではない。この点に関しては、次項3で述べる今回追加される規定以外の、他の通信への混信や妨害に配慮した既存の規定の活用や、5項で述べる万一混信等が生じた場合の措置で対応すべきものと考えられる。

高速電力線搬送通信設備に係る測定方法は、研究会における検討及びCISPR委員会の 審議を経て、情報通信審議会から答申されたものであり、以上述べたことを勘案する と、情報通信審議会の答申に従って技術基準を規定することは適当と認められる。

## 3 技術基準の許容値について

無線設備規則で追加する規定の許容値に関し、反対の意見を表明する利害関係者から主に次のような理由から反対の意見があり、総務省から回答があった(詳細は別紙参照)。

周囲雑音レベルとの比較では、既存の無線通信業務が保護されない。

「短波帯の無線設備の多くは周囲雑音によって受信性能が制限されており、周囲雑音のレベルを基準としてPLC妨害波の許容値を設定するという考え方がなされたものである。研究会において、利害が対立する中で、中立的な専門家案が示され、議論されたものであり、CISPR委員会の審議を経て、情報通信審議会答申の中で採用されたものである。」

- PLCと同一屋内で使用される受信設備への共存の検討がなされなかった。
  「本件意見陳述人から議論が提起されたことは事実であるが、研究会の議論の中で 支持されず情報通信審議会答申に盛り込まれるに至らなかったものと考えている。」
- 放送区域における放送受信を保護すべき。

「ご意見の保護の内容が明確ではないが、本意見陳述人が情報通信審議会における 意見の聴取で主張されたものと同じであり、情報通信審議会でこのような意見も含 めて検討され、答申がなされたものと考えている。」

- ・ アマチュア無線や短波放送に関して規制値のコモンモード電流は大きすぎる。 「研究会において、利害が対立する中で、中立的な専門家案が示され、議論された ものである。その上で、CISPR委員会の審議を経て、情報通信審議会答申の中で採用 されたものである。」
- 電波天文業務に壊滅的な障害が起きる。

「許容値は既に環境中に存在する周囲雑音を基に同等以下となるよう策定したものであり、本件許容値の採用をもって、電波天文業務に壊滅的な障害が起きるとの意見は支持されず答申に盛り込まれるには至らなかった。」

・ 航空においては、周囲雑音の-6dBからしか実験を行っていないが、-6dBで既に影響があるという報告が研究の中で出ている。

「短波帯の無線設備の多くは周囲雑音によって受信性能が制限されており、周囲雑音のレベルを基準としてPLC妨害波の許容値を設定するという考え方がされたものである。」

- ・ PLCからの障害可能性は漁業者の安全確保に対する大きな懸念材料である。 「研究会において海上無線への影響が検討され、CISPR委員会の審議を経て、情報通 信審議会答申の中で採用されたものであり、適切と考える。」
- 周囲雑音レベルが大きすぎる。

「基準とした周囲雑音レベルの値は、CISPR委員会が実施した公開実験において、現に存在する雑音を測定したものであり、適切なものと考える。」

周囲雑音の実測例が少ない。

「住宅環境として周囲雑音が極めて低いと考えられるYRPにおける測定値が使用されていることから、測定箇所が不当に不足しているとの指摘は当たらない。」

・ 周囲雑音レベルの仮定がITU-R勧告P372-8に比べ著しく過大である。

「指摘されているITU-R勧告P372-8は、30年以上前に米国で測定された周囲雑音データに基づいており、その住宅環境は、2000㎡に1軒の住宅がある環境を指して定義しているものであって、我が国の住宅環境に適用することは不適当と考えられたものである。このため、CISPR委員会が実施した公開実験において、構成員も立ち会った上で測定された値を用いている。」

・ 離隔距離が過大である。

「住宅環境の離隔距離10mという値は、平成10年住宅・土地統計調査に基づき、東京都心より10km以内の1戸あたりの面積(長屋建てを含む)が106㎡であることから導出された値である」

・ 木造住宅からの漏えい電波はわずかな損失で屋外に放射され大きな妨害を発生させる。

「木造住宅における遮へい効果が小さい点については、情報通信審議会の審議において最悪値で規定しており、安全サイドで導出されていると思っている。」

- ・ 複数のPLCからの障害を総合した累積効果を考慮することが必要。 「累積効果については、10m四方の家が密集しているモデル等により検討がなされ、 その結果をも踏まえて結論が出され、答申がなされている。」
- ・ 最低限のLCL値が16dBプラスマイナス3dBと変更された。 「指摘のLCL値の±3dBの許容偏差は、測定誤差に関するものであり、規格値はあ くまでも16dBである。」

その後、質疑応答が行われたが(詳細は別紙参照)、議論は平行線で、意見を述べた利害関係者の納得を得るに至らなかった。なお、これらの意見は、ほとんどが研究会やCISPR委員会で構成員、パブリックコメント等によって既に提起されていたものである。

これらの点については、以下のように考える。

まず、今回無線設備規則に追加される規定における許容値の性格についてであるが、電力線搬送通信設備は、電波法上「高周波利用設備」に位置づけられ、設置に当たっては、原則、電波法第100条第1項により許可を受けなければならないとされている。今回改正する無線設備規則は、その許可に当たって適用されるものである。

無線設備規則には、今回追加された規定の他、第64条の2で「電力線搬送通信設備、誘導式通信設備又は誘導式読み書き通信設備については、その設備によって副次的に発する電波又は高周波電流が、他の通信設備に継続的かつ重大な混信若しくは障害を与え、又は与えるおそれのあるときは、混信又は障害の除去のために必要な措置

を講じなければならない。」と規定しており、本条は本件高速電力線搬送通信設備に も適用される。

また、電波法第100条第2項では、「前項の許可の申請があったときは、総務大臣は、当該申請が第5項において準用する第28条、第30条又は第38条の技術基準に適合し、且つ、当該申請に係る周波数の使用が他の通信(総務大臣がその公示する場所において行なう電波の監視を含む。)に妨害を与えないと認めるときは、これを許可しなければならない。」とされており、許可に当たっては、今回追加される規定以外にも、他の通信への混信や妨害に配慮した体系になっている。

さらに、5項で述べるように、万一混信等が生じたときに対応する措置も電波法に規 定されている。

以上のことから、今回追加される規定における許容値は、「他の通信に絶対に妨害を与えないことを保証するものではなく、他の通信に有害な妨害を与えない限りにおいてここまで許容する」という性格のものであると考える。総務省も回答の中で「欧米でもそうであるが、技術基準を守れば、絶対に混信が起きないというようなものではない。」と述べている。例えば米国のFCC規則で、「本パートで規定された限度値を守ったとしてもすべての状況下で有害な妨害を防止できるとは限らないことに注意しなければならない。」と定めているのと同様と考えられる。なお、答申で示された許容値は、測定方法が異なるため一概には比較できないが、米国の規格と比べて厳しめに設定されているものと考えられる。

研究会や情報通信審議会での検討経緯を見ると、許容値については、より高速の信号伝送を可能とするために電波の漏えいをできる限り許容すべきという意見、それとは反対に、無線利用システムが受ける妨害を極力排除するために電波の漏えいをできる限り制限すべきとする意見、両者の中間的な値にすべきとする意見など様々な意見が出され、考え方の乖離は非常に大きいものであった。今回意見の聴取で述べられたような厳しい許容値を求める意見は、研究会や情報通信審議会情報通信技術分科会CISPR委員会でも、構成員からの意見やパブリックコメント、関係者からの意見として主張されたが、それらの意見を聴取した上で審議が行われ、情報通信審議会から答申が出された。妨害を受ける側の意見を全て受けいれれば限りなく厳格な許容値になることが想定されるが、先ほど述べた今回追加される規定の許容値の性格を勘案すると、妨害を受ける側の要求が完全には満たされたものでないにしても、1項で述べたように必要な手続きを経て適切に運営され、両者の意見を踏まえた上で出された情報通信審議会の答申は尊重すべきものと考える。

以上のことを勘案すると、本件で追加される規定の許容値は、情報通信審議会の答申に従ったものであり、適当と認められる。

なお、総務省は、高速電力線搬送通信設備の設置の許可に当たって、当該申請に係る周波数の使用が他の通信に妨害を与えないと認めるために必要な場合は、資料の提出若しくは説明を求め又は実地の調査を行うなどして、慎重に審査することが必要と考える。

また、許可した設備と他の無線利用との共存状況を把握し、必要と考えられる場合には、情報通信審議会の答申にもあるとおり、本技術基準を見直すことが重要である。

- 4 無線通信規則の改正に関連するその他の論点
  - (1) フィルタの挿入等

フィルタの挿入等について次の意見があった(詳細は別紙参照)。

「屋内に電力線搬送通信設備を設置したとしても同設備が電力線に送信する高周波信号は電力積算計を通過して屋外の電力線に流れ込み、屋外で大きな妨害波を発生させる。本省令改正案には屋外への高周波電流の漏えい防止策が盛り込まれておらず、規則として大きな不備がある。」

「屋外に漏れ出すのを防止するためのフィルタ設置は必須の条件になるが、本案にはその記載が無い。同様に屋内配線から屋外に引き出されているエアコン配線やクリスマスツリーの電飾、離れ部屋への架空配線などについてもフィルタを挿入し漏えいを防止しなければならないが、その点についても記載は無い。」

これに対し、総務省から次のような回答があった(詳細は別紙参照)。

「屋外配電線と宅内コンセントの間の平均信号減衰量については実測データがあり、40dB~60dBである。また、集合住宅における隣接住戸間の系統など分電盤を介する電力系統においての減衰量についても実測データがあり、おおむね30dB以上の減衰が発生している。このようなことも考慮し、研究会において検討されたものである。」「家屋内から家屋外への引き出し電力線に生じるコモンモード電流は、一般に、負荷の平衡度がよければ、また、コモンモードインピーダンスが大きければ減少する。また、電力線が短ければ放射効率は下がる。さらに、大地面上や地下に敷設した電力線や、金属管と近接した電力線からの電磁波の漏えいについても、遮へいや鏡像電流による相殺効果が期待できる。したがって、エアコンの室外機や電飾の配線の影響は小さいと考えられる。」

フィルタについては、上述の研究会での議論及び前項で述べた他の通信への混信 や妨害に配慮した既存の規定を勘案すると、情報通信審議会の答申に従うことが適当と認められる。

なお、離れ部屋への架空配線については、総務省から「屋外電力線であり、屋内ではない。」との回答があった。

#### (2) 医療機器へのイミュニティ

医療機器へのイミュニティについて次の意見があった(詳細は別紙参照)。

「研究会に対するパブリックコメントとして医療関係者から懸念の声が上がった。 国民の安全・安心を保証するのが国の仕事であるが、国はその責任を未だに果たしていない。」

これに対し、総務省から次のような回答があった(詳細は別紙参照)。

「電力線を経由する医療機器への影響については、電波法令の対象とするものでは なく、それを所管する省庁の考え方や検討を見守る必要がある。」

本件については、総務省の回答は合理性があると認められる。

#### (3) PLCへの妨害

PLCへの妨害について次の意見があった(詳細は別紙参照)。

「アマチュア無線局が運用中、PLC機器に妨害を与えた場合、アマチュア無線局はどのような規制を受けるのか。PLCはその構造上、広帯域の短波帯送受信機になっており、近傍からの短波帯電波(たとえばアマチュア無線の電波)の影響により、PLCとしての機能を果たせなくなる危険性がある。」

これに対し、総務省から次のような回答があった(詳細は別紙参照)。

「電波法において、その目的から、高周波利用設備に対する無線局からの障害防止 は規定されていない(電波法第30条に、無線設備には、人体に危害を及ぼし、又 は物件に損傷を与えることがないように、総務省令で定める施設をしなければならないとあるので、全部免責されているわけではない)。無線局からの障害を避け、PLCがその機能を果たせるよう、メーカで技術開発を進めることが重要と承知している。このようなPLCの位置づけの理解を進めることが、PLCの機能障害時の被害の拡大防止や、無線局との紛争回避にもつながるものと考えられる。」

本件については、総務省の回答は合理性があると認められる。

#### (4) ITU、CISPR等での検討状況

ITU、CISPR等での検討状況について次の意見があった(詳細は別紙参照)。

「ITU-R SG6の勧告案について、米国以外はすべて賛成し、米国の中でも北米の事業者は賛成している。また、ITU-T SG5では規制値を厳しくしようという動きがある。」「CISPRにおいては、PLCの漏えい電波の規定につき現時点で一定の方向性が得られていないと考えられる。」

これに対し、総務省から次のような回答があった(詳細は別紙参照)。

「ITU-R SG6の勧告案を我が国の規制値とする際には、国内事情も踏まえてレギュレーションとすることとなるものと思う。ITU-T SG5の勧告はPLCの漏えい電波の許容値として事前の適合性評価に使用するためのものではないと承知している。」

「PLCに関する許容値及び測定法の国際審議団体は、電波監理当局や放送事業者、メーカが参加したCISPRの場で決められるべきものと承知している。」

「CISPRにおいては、屋内のもののみならず屋外のものも検討されており、全世界の配電系が複数あることから、タスクを整理して検討を進めているところである。」

本件については、総務省は、情報通信審議会の答申にもあるとおり、高速電力線 搬送通信設備の漏えい電波に関して、無線通信規則やCISPR規格が策定された場合は、 必要に応じて本技術基準を見直すことが重要である。

#### (5) 無線通信規則15.12への適合性について

無線通信規則15.12への適合性について次の意見があった(詳細は別紙参照)。 「今回の無線設備規則の改正が、国際電気通信連合憲章に規定する無線通信規則15. 12に係る主管庁の義務に明確に反することを示唆している。」

これに対し、総務省から次のような回答があった(詳細は別紙参照)。

「本改正は、高速電力線搬送通信設備が無線通信業務に与える有害な混信の排除の 観点から策定しようとするものであり、無線通信規則15.12に規定する主管庁の義務 を履行するものである。」

無線通信規則15.12では、各種の電気機器及び電気設備が無線通信業務に有害な混信を生じさせないようにするため主管庁が必要な措置を執らねばならない旨規定している。

今回の無線設備規則の改正は、情報通信審議会の答申に従った許容値を追加する ものであること、3項で述べたように、電波法や無線設備規則において今回追加する 規定以外にも、無線通信業務への混信や妨害に配慮した規定があること、さらに次 項に述べるように、混信等が生じたときに対応する電波法上の制度も整っているこ とから、無線通信規則15.12に定める主管庁の義務に反するとは認められない。

#### 5 混信等が生じた場合の措置について

(社)日本アマチュア無線連盟から、賛成の意見が表明された後、「高速電力線搬送 通信設備が今後稼働した場合において、アマチュア無線への障害が発生した際には、 その障害の除去について速やかに措置するよう、配慮願いたい。」との要望があった。 これに対し、総務省から「無線設備規則第64条の2の規定に違反して障害が発生 した場合には、電波法の規定に基づき、障害の除去について必要な措置をとることと なる。」旨の回答があった。

また、反対の意見を表明する利害関係者から、概略次のような反対の意見があった(詳細は別紙参照)。

「既存アマチュア無線局の無線設備の機能に障害があった場合、法令として妨害を排除する規定はあるのか。」

「一度許可を受けた設備が他の無線設備に障害を及ぼした場合、無線局と異なり再免 許の制度はないから、再免許申請の審査時に妨害の有無を確認することはできない。 障害が解消しなくても、3か月を超える運用停止命令はできないと考えている。」

これに対し、総務省から、次のような回答があった(詳細は別紙参照)。

「無線設備規則第64条の2の規定に違反して障害が発生した場合には、電波法の規定に基づき、障害の除去について必要な措置をとることとなる。また、電波法第100条第5項で一般の無線局に関する規定を準用して障害除去に関する制度を整備しており、必要な制度整備がなされているものと考える。」

「3か月という話については、3か月を繰り返すということも考えられるところである。」

この点については、以下のように考える。

まず、許可を受けた者は、無線設備規則第64条の2に基づき、混信等の除去のために必要な措置を講じる義務がある。許可を受けた者が無線設備規則に違反してこの措置を講じない場合は、電波法第100条第5項で準用する第76条第1項により、総務大臣は3か月以内の期間を定めて、運用の停止を命じることができるとされている。この間に措置を講じない場合は、命令を繰り返すことも可能と考えられる。また、この命令に従わない場合は、第76条第3項により、許可を取り消すことができるとされている。

このように、万一混信等が生じたときに対応する電波法上の規定は整っていると認められる。

なお、総務省は、高速電力線搬送通信設備の許可に当たり、許可を受ける者に対し、 無線設備規則第64条の2に基づく措置を講じる義務があることを周知することが必 要である。また、万一混信等が生じた場合に迅速に対応できるよう、総務省は体制の 整備に努めることが必要である。

#### 6 結論

高速電力線搬送通信は、情報通信インフラのブロードバンド化が進展する中、屋内で既存の電力線を使用することにより、容易なネットワーク構築に資するものであり、その導入を可能とする無線設備規則の改正の意義は認められる。また、今回の意見の聴取に際し、高速電力線通信推進協議会及び(社)日本アマチュア無線連盟から賛成意見(要望あり)が出されている。

意見の聴取では、欠席者2者を含む5者からの反対意見も表明されたが、無線設備規則は今回追加する規定以外にも、混信等の除去のための措置を講ずる義務を定めていること、電波法では技術基準への適合性に加え、他の通信に妨害を与えないと認める

ときにこれを許可することとされているなど、電波法全体でみると混信や妨害に配慮 した体系となっていること、万一混信等が生じたときに対応する措置も電波法に規定 されていること、及び、上記1項から5項で述べたことを総合的に勘案すると、情報通 信審議会の答申を尊重することが適切と考えられる。

よって、今回の無線設備規則の改正案は、情報通信審議会答申「「国際無線障害特別委員会 (CISPR) の諸規格について」のうち「高速電力線搬送通信設備に係る許容値及び測定法」についての一部答申」に従って適切に規定されており、また、これまで3項から5項で述べた以下の点に総務省が配意することにより、電波監理上特段の支障は生じないと考えられることから、本件諮問に係る無線設備規則の改正案は、適当と認められる。

- (1) 高速電力線搬送通信設備の設置の許可に当たって、当該申請に係る周波数の使用が他の通信に妨害を与えないと認めるために必要な場合は、資料の提出若しくは説明を求め又は実地の調査を行うなどして、慎重に審査すること。
- (2) 許可を受ける者に対し、無線設備規則第64条の2に基づく措置を講じる義務 があることを周知するとともに、万一混信等が生じた場合に迅速に対応できるよ う、総務省としても体制の整備に努めること。
- (3) 情報通信審議会の答申にもあるとおり、許可した設備と他の無線利用との共存 状況を把握し、必要と考えられる場合には本技術基準を見直すこと。また、高速 電力線搬送通信設備の漏えい電波に関して無線通信規則やCISPR規格が策定され た場合は、必要に応じて本技術基準を見直すこと。

# 電波監理審議会(第909回)議事要旨

1 日 時

平成18年9月13日(水)15:10~17:40

2 場 所

総務省会議室(10階1002会議室)

- 3 出席者(敬称略)
- (1) 電波監理審議会委員 羽鳥 光俊(会長)、井口 武雄(会長代理)、小舘 香椎子、浮川 初子
- (2) 電波監理審議会審理官 西本 修一
- (3) 幹事

三井 一幸 (総合通信基盤局総務課課長補佐)

(4) 総務省

森総合通信基盤局長、河内電波部長、鈴木情報通信政策局長、中田審議官、他

## 4 議事模様

(1) 電波法施行規則、無線局運用規則及び無線設備規則の各一部を改正する省令案並びに周波数割当計画の一部変更案について

(18.7.12諮問第17号及び第18号)

浮揚式S-VDRの導入及び衛星EPIRB等が使用する周波数の追加に係る標記省令 案並びに周波数割当計画の一部変更案について、意見の聴取の手続を主宰した審理官から提 出された意見書(参照:第414回電波監理審議会意見の聴取意見書)及び調書に基づき審 議した結果、適当であると認め、答申した。

(2) 無線設備規則の一部を改正する省令案について (18.7.12諮問第19号) 2MHz~30MHzの周波数帯を用いる電力線搬送通信設備の技術基準を規定するための無線設備規則の一部を改正する省令案について、意見の聴取の手続を主宰した審理官から提出された意見書(参照:第415回電波監理審議会意見の聴取意見書)及び調書に基づき審議した結果、省令案については適当であるとした上で、総務省において配意すべき事項

として以下の3点を付して答申した。

- ① 高速電力線搬送通信設備の設置の許可に当たって、当該申請に係る周波数の使用が他の 通信に妨害を与えないと認めるために必要な場合は、資料の提出もしくは説明を求め、ま たは実地の調査を行うなどして、慎重に審査すること。
- ② 許可を受ける者に対し、無線設備規則第64条の2に基づく措置を講じる義務があることを周知するとともに、万一混信等が生じた場合に迅速に対応できるよう、総務省としても体制の整備に努めること。
- ③ 情報通信審議会の答申にもあるとおり、許可した設備と他の無線利用との共存状況を把握し、必要と考えられる場合には、2MHzから30MHzまでの周波数を使用する電力線搬送通信設備の技術基準を見直すこと。また、高速電力線搬送通信設備の漏えい電波に関して、無線通信規則やCISPR規格が策定された場合には、必要に応じて本技術基準を見直すこと。
- (3) 電波法施行規則及び無線設備規則の各一部を改正する省令案について (諮問第23号) 本件は、諮問第24号と関連する事案であったため、諮問第24号と一括して総務省の説 明があった。
- (4) 周波数割当計画の一部変更案について

(諮問第24号)

本件は、諮問第23号と関連する事案であったため、諮問第23号と一括して総務省の説明があった。

なお、諮問第23号については、電波法第99条の12第1項により意見の聴取が義務付けられており、また、諮問第24号については、諮問第23号と一括して意見の聴取を行うことが適当であると認められたため、一括して意見の聴取を行うこととし、その意見の聴取の手続を主宰する審理官として西本修一を指名した。

#### ○ 総務省の説明

433MHz帯を使用するアクティブタグシステムは、広く国際物流分野において、コンテナの開閉状況やトラッキング、位置追跡等の情報を電子的に管理すると言うことで、国際物流管理の効率化やセキュリティの向上のため国際的にも規格が定められ、諸外国においても制度整備・実用化が進んでいるところである。

我が国においても、国際物流分野における円滑な国際物流の確保、あるいは競争力の確保という観点から、タグシステムの利用ニーズが高まっている。このような状況を踏まえ、433MHz帯アクティブタグシステムの技術的条件について情報通信審議会で審議し、平成18年7月20日に一部答申を受けたところである。本件は、この答申に基づき、4

3 3 MH z 帯アクティブタグシステムの導入に必要な関係規定の整備を図るものである。 タグシステムの利用シーンとしては、主に港湾や空港、あるいは工場・倉庫・配送セン ターといった場所での活用が想定される。港湾や空港に移設されたインテロゲータという タグを起動する情報を送る装置からの起動情報を受け、タグからトラッキング情報やコン テナの開閉に関する情報等送られるというような使用形態が想定される。

次に、このタグシステムが使用する433MHz帯の周波数帯については、我が国では アマチュア業務等に広く利用されており、本タグシステムの導入に当たり、アマチュア局 の運用を阻害しないよう、インテロゲータから放射する電力を必要最小限に抑える。さら に、アクティブタグシステムの用途を国際輸送用に限るとともに、使用場所についても、 港湾、空港等、必要な場所に限定するような条件を課す。

本件省令改正の概要としては、まず、電波法施行規則に、免許を要しない特定小電力無線局の使用する周波数帯として、アクティブタグシステムが使用する433.92MHzを追加する。また、無線設備規則において、受信設備が副次的に発する電波の限度や送信側の不要発射の電波の強度の許容値等をさだめる。なお、インテロゲータ及びアクティブタグの用途、空中線電力等については、告示で規定する。

周波数割当計画については、 $432\sim438$  MHzの周波数帯に移動業務を追加して、無線局の目的を小電力業務用(国際輸送用データ伝送用)とし、433.92 MHzを新たに割り当てる。 $432\sim438$  MHzの周波数帯は、国際的には移動業務には分配されていないため、本周波数帯における移動業務は2 次業務とする。それから、他の無線局または受信設備に有害な混信を生じさせてはならず、また、他の無線局による有害な混信からの保護を要求してはならないと言う条件を付す。

#### (5) 電波の利用状況の調査等に関する省令の一部を改正する省令案について

(諮問第25号)

総務省が毎年実施している電波の利用状況調査の効率化を図るための、電波の利用状況の 調査等に関する省令の一部を改正する省令案について、次のとおり総務省の説明があった。

なお、本件については、電波法第99条の12第1項により意見の聴取が義務付けられており、意見の聴取の手続を主宰する審理官として西本修一を指名した。

#### ○ 総務省の説明

電波の利用状況調査では、割当可能な周波数を3つの周波数帯に分け、それぞれの周波数帯 について3年を周期として実施している。この調査は平成15年度から行っており、今年度か らは2巡目の調査に入っているが、この調査は、新しい電波需要に対応するための電波の再配 分等の方策を検討する上で大変重要なものであるため、今後とも重要な業務と位置づけて取り 組みたい。

現在の調査では、固定業務や異動業務など無線通信の態様ごとに実施しているが、この方法の場合、調査票を6種類用意しなければならなくなり、複数の無線通信業務を行っている免許人には複数の調査票が送付され、それぞれの無線通信の態様ごとに調査票を作成しなければならない。これを改善するため、調査票による調査事項を、調査後に行う評価に直接的にかかわるものに限定するとともに、各無線通信の態様に共通したものに整理して、1種類の調査票で対応可能とする。

また、現行の省令において、調査対象の無線システムを規定しているが、調査対象となっていない無線システムであっても、例えばニーズの少ないものについて、廃止に向けた周波数割当計画の変更時期を検討するといった必要があるため、今後は、原則としてすべての無線システムを調査対象とする。ただし、これまで対象としていなかった無線システムの調査を実施しようとする場合には、調査の必要性を充分に検討し、免許人に過度な負担を強いることがないようにする。このような見直しを行うことにより、電波の有効利用の程度の評価作業に充分に時間をかけることができるようになり、これまで以上に国民に分かりやすい評価結果を公表できるようになると考えている。

(6) ボーダフォン株式会社所属特定無線局の包括免許について (諮問第26号) ボーダフォン株式会社(以下、「ボーダフォン」という。)から申請のあった、HSDP A (High-Speed Downlink Packet Access)技術対応端末への包括免許について、次のとおり総務省の説明があり、審議の結果、適当である旨答申した。

#### ○ 総務省の説明

現在、ボーダフォンは第三世代のW-CDMA方式による携帯電話サービスを提供しているが、今回、データ伝送速度の高速化のために、従来のW-CDMA方式に加え、HSDPA方式を実装した新しいタイプの端末を導入するものである。HSDPA対応端末の包括免許については、平成18年7月に電波監理審議会にNTTドコモからの申請について諮問しており、今般、NTTドコモに引き続き、ボーダフォンも平成18年10月1日から端末の使用を開始したいという申請があった。

HSDPAをW-CDMAに追加して実装した場合、端末の電波の受信状況に応じて高度な変調方式を用いることが可能になり、より多くの信号を送ることができる。この技術の活用により、基地局から端末への伝送速度が現在の10倍程度に高速化され、楽曲のダウンロードや映像配信サービスの高速化等の新しいサービスの提供が期待される。

以上の内容について、電波法27条の4に規定されている包括免許に関する審査項目に 沿って審査を行った結果、電波法の規定にいずれも適合しているため、申請どおり、包括 免許を付与することとする。

(7) 放送法施行規則、無線設備規則、放送局の開設の根本的基準、電気通信役務利用放送法施行規則及び標準テレビジョン放送等のうちデジタル放送に係る送信の標準方式の各一部を改正する省令案について (諮問第27号)

CSデジタル放送に高度狭帯域伝送方式を追加するための関係省令の改正案について、次のとおり総務省の説明があった。

なお、本件については、電波法第99条の12第1項、放送法第53条の11第1項及び 電気通信役務利用放送法第19条第1項により意見の聴取が義務付けられており、意見の聴 取の手続を主宰する審理官として西本修一を指名した。

#### ○ 総務省の説明

本改正は、12.2GHzを超え12.75GHz以下の周波数を使用する衛星デジタル放送、いわゆるCSデジタル放送の高度化に関するものである。

CSデジタル放送は、伝送周波数帯域幅が  $2.7\,\mathrm{MHz}$ である狭帯域のCSデジタル放送と、  $3.4.5\,\mathrm{MHz}$ のトランスポンダ向けの広帯域のCSデジタル放送があり、今回は、狭帯域のCSデジタル放送に新しい規格を加える。狭帯域においては、SDと言われる標準画質にてテレビを放送している。高画質化を図り、HDTV化を推進するために新しい方式を導入するということで、新たに技術基準を定める。この技術基準については、平成 $1.7\,\mathrm{Fl}$ 0月から情報通信審議会において、CSデジタル放送方式の高度化に関する技術的条件が審議され、平成 $1.8\,\mathrm{Fl}$ 7月20日に答申が出されており、これを受けて導入するものである。

今回導入する技術は、伝送路符号化方式と映像符号化方式の2点であり、伝送路符号化方式は、現行のDVB-S方式を、新たにDVB-S.2方式にすることで約30%の伝送効率の向上が期待できる。また、映像符号化方式については、現行ではMPEG-2方式を使用しているが、H.264という新しい映像符号化方式を導入することで約2倍に圧縮効率が上げられる。H.264は、既にITU-T等において標準化されている。DVB-S.2も欧州標準として既に実用化されており、ITUにおいても国際標準化の最終段階に入っている。この技術を導入すると、現在のMPEG-2方式では1中継器あたりハイビジョン1チャンネルが限界であるところ、新方式では3チャンネルほどの多重伝送ができる。

この技術を導入するに当たり、まず、メーンのポイントとして、標準方式の省令に高度 狭帯域伝送方式と言う1節を加えて定義する。その上で、主な改正内容として、委託放送 業務等の認定基準において、各委託放送事業者が使う伝送容量を用いて占有するトランス ポンダの数を規定する部分があり、それを計算するための数値を規定上加える。技術基準としては、変調形式として8相位相変調を導入する。伝送速度は、先に説明した伝送方式の導入により69.718Mbpsまで上がる。フィルタについては、ロールオフ率が0.2と急峻なものを導入する。併せて、伝送信号としては誤り符号としてLDPC(Low Density Parity Check)符号とBCH(Bose, Ray-Chaudhuri, Hocquenghem)符号を組み合わせたもの、映像符号化方式としては、MPEG-2に加え、H.264を追加するという改正を考えている。

最後に、施行期日は、平成19年の1月下旬公布・施行を考えている。

## (8) 放送用周波数使用計画の一部変更案について

(諮問第28号)

人工衛星局JCSAT-3Aの運用を開始するための放送用周波数使用計画の一部変更 案について、次のとおり総務省の説明があり、審議の結果、適当である旨答申した。

#### 〇 総務省の説明

現在、JCSAT株式会社が打ち上げている通信衛星の中で、CSデジタル放送で使用している部分としては、東経128度にJCSAT-3、東経124度にJCSAT-4 Aが打ち上がっており、軌道上の予備機という形でJCSAT-4が上がっている。

今回、1995年に打ち上げられたJCSAT-3が間もなく寿命を迎えるということで、平成18年8月に後継機としてJCSAT-3Aを打ち上げた。このJCSAT-3Aについて、平成19年から周波数を出せるようにするために所要の手当てを行う。

変更内容としては、放送用に使用できる送信場所としてJCSAT-3Aを追加して、その使用する周波数を定めるということで、現在JCSAT-3が使用している周波数をそのまま明記する。あわせて、JCSAT-3Aが運用された場合の予備機の手当をすると言うことで、予備衛星の位置づけを明記する。

今後のスケジュールとしては、答申後速やかに放送用周波数使用計画を変更し、官報へ の掲載を行う。

(9) 日本放送協会の中継国際放送に関する協定の廃止の認可について (諮問第29号) 日本放送協会(NHK)とラジオ・フランス・アンテルナシオナル(RFI)との間で結 ばれていた中継国際放送に関する協定の廃止の認可について、次のとおり総務省の説明及び 質疑応答があり、審議の結果、適当である旨答申した。

#### ア 総務省の説明

現在、NHKのラジオ国際放送は、1日延べ65時間・22言語で毎日世界に向けて発信されている。日本では茨城県にある八俣送信所から発信しているが、これだけでは海外

の受信環境を整えることは難しいため、海外の中継局を設け、受信環境の改善に努めているところである。この中継局については、海外の放送事業者と交換して、対価を求めずに施設を相互利用して配信してもらう方法と、海外の送信施設を借用して、対価を払って発信する2つのタイプがある。

現在、フランスのRFIとNHKの間では、この前者のタイプである施設の相互利用に係る協定を締結して、ギアナのモンシネリ送信所からNHKのラジオ日本の放送を流し、逆に、NHK側の八俣送信所からRFIの番組を東南アジア・アジア大陸向けに流していたところであるが、今回、この協定を廃止するものである。

廃止しようとする背景事情は、この協定における、一方からの廃棄通告によって協定を解消できる旨の規定に基づき、平成18年3月7日にRFIからNHKに対して協定解約の通知があり、その後、両者間で交渉が行われ、RFI側に継続の意思がないことが確認されたものである。

この協定に係る、ギアナから中南米向けに発信している番組は7.5時間あり、このうちの4.5時間分は日本からも中南米向けに同じ内容のものを配信している状況であるが、中南米地域の受信環境を維持する必要があると言うことで、協定廃止後の案として、日本の八俣送信所からは引き続き4.5時間送信し、ギアナからは、今7.5時間送信しているところを3時間に絞り込んで流すということである。この差に当たる4.5時間分については、現在も日本の八俣送信所から同じように送信されており、ギアナから固有に流している独自の放送部分3時間分は、協定廃止後もギアナの設備を借用する形で継続させたいということである。このとおり、ギアナ固有の番組は維持ができる。また、残る部分についても日本から引き続き配信できるということで、総務大臣の命令放送の実施には支障がないということで、協定の廃止について適当と判断したい。

# イ 主な質疑応答

- ・ RFIがアジア向けの短波放送サービスを縮小すると言う事情の背景は分かるか、と の質問に対し、総務省から、国際放送でラジオ短波放送はこれまでの主力であったが、 衛星を使った映像国際放送やインターネット配信といった新しい技術が出てきており、 地域ごとに効果的な配信手段を用いながら国際放送を見直そうと言う動きがある。RFIにおいても、経費削減の観点に立ちつつ、このような国際放送全体の見直しの一環で 今回のような計画変更に至ったと聞いている、との回答があった。
- ・ 今後も今回のようなことが続く可能性があるということか、との質問に対し、総務省から、NHK自身も、今のラジオ短波国際放送について、いろいろな技術の態様を含めた効果的な国際放送の推進について検討を進めている。各国ともラジオよりはテレビに向けて動かしているというところであり、今後もこのようなことは続くものと思われる、

との回答があった。

(10) 日本放送協会のモバイル放送株式会社に対し番組を提供する業務の認可について (諮問第30号)

NHKのモバイル放送株式会社に対し番組を提供する業務の認可について、次のとおり総務省の説明があり、審議の結果、適当である旨答申した。

#### ○ 総務省の説明

モバイル放送は、我が国初の移動体向け衛星デジタル放送を実施しているものであり、 具体的なサービスイメージとしては、人工衛星局を使用して、アップリンクした番組を日本各地に衛星放送を通じて提供しており、これには音声も映像も含まれている。都市部においては、ビルの陰等で受信しづらいところもあるため、ここについては、衛星補助放送を用いて、基本的にどこでも受信できるような形を作っている。

このモバイル放送については、平成16年10月20日に放送を開始し、現在まで順次 サービスを拡大しているところである。

本件は、NHKがこのモバイル放送に対し、平成18年10月1日から平成19年9月30日まで、1日合計8時間程度のニュース、スポーツ中継、その他の一般番組を提供しようというものである。また、非常災害時においては、災害時の情報源として、モバイル放送の役割にかんがみ、要請に応じてこれを超える場合もあるということである。このような業務について、放送法に基づいて、特別に認可をして実施可能とするものである。

収支については、NHKからの報告によると、収入が2億400万円、支出が1億9,500万円、差額が900万円となり、これがNHKの放送権料である。

本件認可については、放送法上の当てはめとして、モバイル放送がおよそ2年を迎えようとする現時点において、なお放送の普及途上にあり、デジタル放送に関して豊かな経験とノウハウを有するNHKがこのような番組提供を行うことは、我が国の移動体向けデジタル放送サービスの普及・発展、ひいては我が国の放送、受信の進歩・発達に資するということから、放送及び受信の進歩・発達に特に必要な業務である。

なお、NHKの業務について、営利を目的としないのかと言う論点があるが、今回の業務については、NHKが実費と権利料を賄う収入を見込んで提供するものであり、営利を目的とするものではないと認められると考える。

(文責:電波監理審議会事務局)

# 電波監理審議会(第916回)議事要旨

# 1 開催日

平成19年3月28日(水)

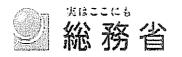
## 2 場 所

持ち回りによる。

# 3 出席委員(敬称略)

羽鳥 光俊(会長)、井口 武雄(会長代理)、濱田 純一、小舘 香椎子、浮川 初子

# 4 議事模様


広帯域電力線搬送通信設備の型式指定処分に係る異議申立てについて(付議第1号)

平成19年3月23日付けで付議された、総務大臣が行った平成18年総務省告示第617号、平成18年総務省告示第646号、平成18年総務省告示第679号及び平成18年総務省告示第683号により告示された広帯域電力線搬送通信設備の型式指定に係る異議申立てについては、省側の付議に係る説明資料により、会長及び連絡が取れた委員で審議し、本件審理を主宰する審理官として西本修一を指名した。

(文責:電波監理審議会事務局)

# 資料 子 引動

# 報道資料



MIC Ministry of Internal Affairs and Communications

# 総務省人事

平成18年7月21日

# (平成18年7月21日付)

新

Ш

氏名

総務事務次官

(内閣官房内閣審議官(内閣官房副長官補 付)) 松田 隆利

総務審議官(自治行政)

(自治財政局長)

瀧野 欣彌

総務審議官(郵政・通信)

(総務審議官(国際))

有冨 寬一郎

総務審議官(国際)

(政策統括官(情報通信担当))

清水 英雄

大臣官房長

(大臣官房総括審議官(市町村合併等担 当))

荒木 慶司

| 総合通信基盤局電波部電波環境課長                   | <ul><li>(独立行政法人宇宙航空研究開発機構宇宙利用推進本部衛星利用推進センター主幹開発員)</li></ul> | 杉浦 誠   |
|------------------------------------|-------------------------------------------------------------|--------|
| 総合通信基盤局国際部長                        | (大臣官房審議官(行政評価局担当))                                          | 蝶野光    |
| 郵政行政局長                             | (総合通信基盤局長)                                                  | 須田 和博  |
| 郵政行政局検査監理官                         | (東北総合通信局総務部長)                                               | 大高 光三  |
| 統計企画管理官(政策統括官付)<br>併任解除            | (統計審査官(政策統括官付) 併任 政策<br>統括官付統計企画管理官付)                       | 北田 祐幸  |
| 統計審査官(政策統括官付)<br>併任 政策統括官付統計企画管理官付 | <ul><li>( 行政管理局行政情報システム企画課個人<br/>情報保護室長 )</li></ul>         | 山内 達矢  |
| 統計審査官(政策統括官付)                      | (農林水産省大臣官房企画評価課調査官)                                         | 小林 真一郎 |
| 国際統計管理官(政策統括官付)                    | (厚生労働省社会•援護局援護課長)                                           | 紀本 明宏  |
| 審理官                                | (情報通信政策局宇宙通信政策課長)                                           | 西本 修一  |